
Subsystems Integration

1. Introduction

The increasing technological sophistication of building systems means they can affect
a business's bottom line - for better or worse. Creating a high performance building -
an effective building that operates efficiently, and attracts and retains occupants with
its amenities and benefits - is something owners want, and it can be achieved by
integration. But effective integration is not just a matter of tying subsystems together.

The idea of different systems with different responsibilities working together as if part
of a team - addresses the fundamental aspect of having an effective building. It
involves applying technology to unseen portions of a facility in the interest of creating
a better environment for those working there, and better processes. When done
properly, successful integration shows up on the bottom line of financial reports by
reducing the acquisition cost and the life cycle cost of facilities.

The integration of building systems is not a new concept. However, philosophies of
integration vary. Not too long ago, it was a feat for more than one building system to
be connected to relays, allowing on/off scheduling through the installation of a time
clock. Integration took on a new meaning in the late '70s when computers became
integral parts of businesses, and building systems, adding new dimensions to facility
management. In today's market, integration is not only seen as a tool that can improve
the overall performance of the facility, but also improve the performance of the people
and processes that affect an organization's livelihood. An enterprise-wide approach to
integration can turn something we weren't too concerned with takes on new
implications. For that reason, interest in integration today is stronger than ever.

The most common subsystems that can be integrated are the automation and control
subsystems, which manage specific domains that contain a number of components
that regulate the overall environment including HVAC, electrical, energy, fire, and
security. Traditionally this was done strictly from a supervisory perspective. The
advent of the microprocessor has brought more sophistication to these components,
along with the ability to communicate electronically. This communication leads to
direct connection of the system via a data port, as opposed to the traditional
supervisory approach via relays and sensors. Evolving standards in the world of data
systems bring another dimension to integration: integration of the building systems to
the data system. The most frequent occurrence involves the use of a common data
infrastructure for all systems in the enterprise. Whether it is the business information
system, the voice system, the video system, or the BAS, each resides on a common,
integrated information infrastructure. An important integration occurs when data from

the building systems is integrated with data from the business process itself.

This interest in the integration of distinct building systems into a common, cohesive
operating unit derives from a number of different perspectives. From the daily
operating perspective, integrating building systems and data systems will enable
better management of information that can impact the facility performance, for
example, the building systems are there to serve occupants and they don't need to
operate when no one is in the building, by integrating various subsystems with a BAS,
building occupancy can be determined, for example, by a card access system or by
occupancy sensors in the occupied areas. From the whole enterprise perspective, on a
larger scale, integrating building systems with data systems bring another source of
functional integration: merging important information from the building systems with
information critical to the operation of the business. Consider the example of a
pacemaker manufacturing facility. In this facility, all data pertaining to the
manufacture of the product is retained for historical purposes. If the details of a
specific pacemaker's manufacturing process needs to be reviewed at some point in the
future, the more data retained from the past, the better. To satisfy this requirement, a
tremendous quantity of historical data gathered by the building systems is merged
with information from the plant management system. A review of this information
would show:

• Source of raw materials – from plant management system
• Source of supplied components - from plant management system
• Who did the assembly - from plant management system
• Who did quality assurance inspections - from plant management system
• Was the environment within tolerance - from building system
• Were there any building alarm system abnormalities – from building system

The integration of information from different systems into a common database is
instrumental to the mission of the business in this interactive world of business.

2. Field and Controller Levels Integration

In this highly sophisticated world of intelligent automation and various control
systems, broad knowledge and expertise is continuously being needed to create
products that build on the concept of the intelligent environment and the realization of
smart control applied to various industries.

Although incorporating microprocessor-based controllers/actuators/sensors in these
products to achieve highly distributed control, in the beginning these products were

designed to be manufacturers specific. We saw that with the increase in popularity of
networked automation and energy management systems, communications ports were
added to these products and various communications protocols evolved, and we have
studied several of them so far.

The earliest of these protocols were again, often proprietary to the equipment
manufacturers. Later, as specifications began to require that mechanical and electrical
equipment provide serial interfaces, several of the most common protocols became de
facto standards. Modicon's MODBUS and OPTO-22's OPTOMUX are two examples.
Eventually, several industry standards bodies formed committees to define protocols
that would be available to be deployed without licenses or royalties
(ASHRAE-BACnet, OPC Foundation-OPC, Profibus International-Profibus, etc.). As
object-oriented programming paradigms gained widespread acceptance, it gave birth
to the current generation of object-oriented protocols - BACnet, LonMark Functional
Profiles defined for LonWorks, and European Installation Bus Object Interface
Specification (EIB - ObIS), among others. Refer to BACnet object example shown in
Figure 1, and Figure 2 for LonMark object.

Fig. 1a BACnet network

Fig. 1b Object Properties – mandatory, optional & vendor specific

E v e n t S t a t e

O b j e c t N a m e
O b j e c t T y p e

P r e s e n t V a l u e
S t a t u s F l a g s

O u t o f S e r v i c e
U n i t s

O b j e c t I d e n t i f i e r
D e v i c e T y p e

R e l i a b i l i t y
U p d a t e I n t e r v a l
M i n P r e s V a l u e
M a x P r e s V a l u e

R e s o l u t i o n
C O V I n c r e m e n t

D e s c r i p t i o n
N o t i f i c a t i o n C l a s s

H i g h L i m i t
L o w L i m i t
D e a d b a n d

L i m i t E n a b l e
E v e n t E n a b l e

A c k e d T r a n s i t i o n s

P r o p e r t y 2
T i m e D e l a y

V e n d o r S p e c i f i c
P r o p e r t i e sM a n d a t o r y P r o p e r t i e s O p t i o n a l P r o p e r t i e s

N o t i f y T y p e

P r o p e r t y N

P r o p e r t y 1

A I O b j e c t

Object_Name Space Temp

Object_Type Analog Input

Present_Value 37.5

Unit Degree Celsius

High_Limit 50

Low_Limit 5

Fig. 1c Example analog object properties

This example demonstrates how to read Analog and Binary values into Microsoft Excel using vendor’s

BACnet dll. When the worksheet opens it initializes the Application Layer to use BACnet/IP giving the

device ID 200 and a network number of 1. It then attempts to read the present value of Analog Values 1

to 100. It then attempts to read from Binary Values 1 to 100. When the excel spreadsheet is open, it

acts as a BACnet device on the network with a device ID of 200. Any BACnet device on the network

including a BACnet workstation can read/write to the excel spreadsheet. The Excel Spreadsheet can

also be set up to read/write from any BACnet device on the network.

**When the vendor’s dll is available, open up Microsoft Excel and go into the Visual Basic Editor then

configure the vendor provided BACnet dll library to be included in the Tools-Reference. Open up the

source code window for ThisWorksheet, then type in the following similar coding example.**

Option Explicit

Private objApplicationLayer As New BACNETXLib.ApplicationLayer

Private Sub Workbook_Open()

 Static LoadedFlag As Boolean

 Dim i As Long

 If Not LoadedFlag Then

 LoadedFlag = True

 objApplicationLayer.Initialize "DeviceID=200;IPEnabled=1;IPNetworkNumber=1"

 End If

 Cells(1, 1) = "Instance"

 Cells(1, 2) = "Analog Value"

 Cells(1, 3) = "Binary Value"

 For i = 1 To 100

 Cells(i + 1, 1) = i

 ReadAnalogValue i

 ReadBinaryValue i

 Next

BACnet objects are manipulated

through Services, among them

is Object Access Services, which

include: ReadProperty,

WriteProperty, CreatObject,

DeleteObject, etc. The following

VB code example in Figure 1d

illustrates how vendor’s

supplied BACnet dll can be

used together with Excel

spreadsheet .

End Sub

Private Sub ReadAnalogValue(Instance As Long)

 'This example demonstrates the use of the readProperty service

 'by reading the present value property from Analog Value number 1 inside device 200.

 'If the service is successful, then the value of the property will be

 'stored in the ack object.

 Dim Service As New ReadProperty

 Service.async = False

 Service.DeviceID = 200

 Service.Request.objectIdentifier.Instance = Instance

 Service.Request.objectIdentifier.ObjectType = BACnetObjectTypeAnalogValue

 Service.Request.propertyIdentifier = Property_presentValue

 Service.Execute

 If Service.Error.choice = BACnetErrorChoiceEmpty Then

 'No Error - Display the results

 Cells(Instance + 1, 2) = Service.Ack.propertyValue.Real

 Else

 'An Error has occured

 Cells(Instance + 1, 2) = "Error Class = " & Service.Error.Error.Class & " Error Class = " & Service.Error.Error.Code

 End If

End Sub

Private Sub ReadBinaryValue(Instance As Long)

 'This example demonstrates the use of the readProperty service

 'by reading the present value property from Binary Value number 1 inside device 200.

 'If the service is successful, then the value of the property will be

 'stored in the ack object.

 Dim Service As New ReadProperty

 Service.async = False

 Service.DeviceID = 200

 Service.Request.objectIdentifier.Instance = Instance

 Service.Request.objectIdentifier.ObjectType = BACnetObjectTypeBinaryValue

 Service.Request.propertyIdentifier = Property_presentValue

 Service.Execute

 If Service.Error.choice = BACnetErrorChoiceEmpty Then

 'No Error - Display the results

 If Service.Ack.propertyValue.Enumerated = BACnetBinaryPVActive Then

 Cells(Instance + 1, 3) = "On"

 Else

 Cells(Instance + 1, 3) = "Off"

 End If

 Else

 'An Error has occured

 Cells(Instance + 1, 3) = "Error Class = " & Service.Error.Error.Class & " Error Class = " & Service.Error.Error.Code

 End If

End Sub

Fig.1d BACnet Analog Input object, with coding example

Fig. 2a LonWorks network

Fig. 2b LonMark Object with Lamp Actuator Object and example code

To understand where we're headed, it is helpful to realize just how far our industry has
advanced. In the 1980's, there wasn't a protocol that could meet the broad needs of
various control industries (e.g. building, industrial, transportation, etc.), even for the
majority of a Building Automation system's needs. As we press forward into the 21st
century, our problem is not one of "not enough" but one of "too much." For example,
we now have not one, but several standard protocols that can meet the needs of an
average building automation system. The various building automation system
manufacturers build products that support one or more of the standard protocols that
are available, however, integrating more than one protocol into a single system can be
a challenge. Although the data structures for the standard protocols are similar, their
implementations are quite different. Gateways between any two of the standard
protocols tend to be complex and less flexible, and bridging more than two can
become unwieldy, as seen from Fig.3 for a typical building automation system.

Fig.3 Typical building automation system

A second problem area stems from the fact that automation systems are increasingly
seen as a part of a much larger information system, as shown in Fig.4. For instance,
facilities managers now routinely have specialized software for managing their tenant
spaces, their assets, their equipment maintenance, and even for their energy
procurement. The requirements for "information integration" are now much broader
than when the standard protocols and their corresponding data models were
conceived.

Fig.4 Automation is becoming a vital part in information system

Therefore, if BACnet, EIB objects, and LonMark functional profiles are methods of
modeling information, what is needed is a unified information model to include these
protocols as well as other automation-related applications. That is, for
device-to-device interface, or at a zone or unitary-controller level integration, it is
practical to apply these automation standard control protocols to provide the WHAT
to communicate among different subsystems to make them interoperate (An example
is shown in Figure 5 for a LonWorks network), and let the information model to
formulate the HOW. I refer to the HOW in the next section – Management Level
Integration

Fig. 5 Interaction between LONMARK Occupancy Controller Object, constant light controller, light

sensor, lamp actuator and a manual override switch,

3. Management Level Integration

Above, we described an evolution of communications methods from proprietary, flat
protocols to open, object-oriented information models. Simultaneous with this
development, a parallel evolution has been taking place in the Information
Technology realm – Web Services.

Web services are self-contained, modular applications that can be run over the
Internet and can be integrated into other applications. Web services perform functions
that can be anything from simple requests to complicated business processes. For

example, a weather bureau could offer a Web service that allows a building
automation system to automatically retrieve temperature forecast data for use by
various control algorithms. Similarly, the building automation system itself could
offer a Web service that allows a tenant's accounting system to obtain
up-to-the-minute figures on energy consumption. In the past, this type of data
exchange would require a custom, "hard coded" data request to retrieve information
that already existed in the host computer. A Web service, on the other hand, is a way
to allow any authorized client to actually run an application on the host computer and
generate data that didn't previously exist. In our accounting example, the tenant's
computer would provide information on the inclusive dates and building areas, and
the Web service host computer would calculate and return the energy consumption
data.

These are very simple examples. In reality, Web services can be very complex, and a
single application program may call upon multiple Web services. A Web service has to
be able to combine content from many different sources. That may include furniture
inventories, maintenance schedules and work orders, energy consumption and
forecasts, as well as traditional building automation information. Web services have to
serve all sorts of devices, platforms, and browser types, delivering content over a wide
variety of connection types for a wide variety of purposes.

So, what is all about in Web services? Let’s first look at HTML (The Hypertext
Markup Language). HTML format was designed for web pages to be read by humans.
Like a universal word processor format, HTML combines text, pictures, and
formatting information so a browser can display it on a screen. HTML is not adequate
for information exchange between computers, however, because it provides no
information about the data that may be contained on the screen and no way to search
for specific pieces of data. For Web services to address all of these needs, two other,
more flexible technologies are crucial: XML and SOAP.

XML (eXtensible Modeling Language) – XML is a technology for moving structured
data across the web or a corporate network. Like the object oriented protocols
described previously, XML documents include more than just raw data. An XML
document includes a definition of the data structure, so the receiving computer knows
what information is contained in which fields.

SOAP (Simple Object Access Protocol) – XML is basically a file format. SOAP is a
way of using XML over a network. SOAP provides a computer application with a tool
that can read the data definitions in an XML document and extract the required data.
SOAP is to XML what HTTP is to HTML.

Let’s look at a simple example using email service:

When saved as HTML format:

When saved as XML format:

To: ssptang@vtc.edu.hk

From: tslam@vtc.edu.hk

CC:

Subject: Turn off the light

It’s Friday. Don’t forget to turn light off in B110.

<html>

 <title>Email</title>

 <body>

 To: ssptang@vtc.edu.hk

 From:tslam@vtc.edu.hk

 CC:

 Subject: Turn off the light

 It’s Friday. Don’t forget to turn light off in B110.

 </body>

</html>
In XML“to”is not

displayable text, but a

tag that identifies

something; in this case a

destination address. The

data is:

ssptang@vtc.edu.hk. The

metadata (or data about

the data) is what to do

with

ssptang@vtc.edu.hk. In

this case use it as the

destination of an email.

E.g. the“to”field.

<email>

 <title>Email</title>

 <header>

 <to>ssptang@vtc.edu.hk</to>

 <from>tslam@vtc.edu.hk</from>

 <cc></cc>

 <subject>Turn off the light</subject>

 </header>

 <body>It's Friday. Don't forget to light off in

B110.</body>

</email>

It is because of the <tags>, XML and HTML look similar, but they are used to
accomplish very different things

 An HTML tag describes how text is to be displayed in a browser

 An XML tag describes the meaning of the text

A more complex file which taking energy data is shown below in XML:

<iLONDataLogger>

 <Log>

 <UCPTindex>0</UCPTindex>

 <UCPTfileName>/root/data/log0.dat</UCPTfileName>

 <UCPTstart>2002-10-30T01:15:00-08:00</UCPTstart>

 <UCPTstop>2002-11-10T17:45:00-08:00</UCPTstop>

 <UCPTlogLevel>36.0</UCPTlogLevel>

 <Element>

 <UCPTpointName>NVL_nvoPcValueDif_1</UCPTpointName>

 <UCPTlocation>pml1964</UCPTlocation>

 <UCPTlogSourceAddress>0.0</UCPTlogSourceAddress>

 <UCPTlogTime>2002-10-30T01:15:00-08:00</UCPTlogTime>

 <UCPTvalue>123.6</UCPTvalue>

 <UCPTunit>KW</UCPTunit>

 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>

 </Element>

 <Element>

 <UCPTpointName>NVL_nvoPcValueDif_1</UCPTpointName>

 <UCPTlocation>pml1964</UCPTlocation>

 <UCPTlogSourceAddress>0.0</UCPTlogSourceAddress>

 <UCPTlogTime>2002-10-30T01:30:00-08:00</UCPTlogTime>

 <UCPTvalue>124.8</UCPTvalue>

 <UCPTunit>KW</UCPTunit>

 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>

 </Element>

 <Element>

 <UCPTpointName>NVL_nvoPcValueDif_1</UCPTpointName>

 <UCPTlocation>pml1964</UCPTlocation>

 <UCPTlogSourceAddress>0.0</UCPTlogSourceAddress>

 <UCPTlogTime>2002-10-30T01:45:00-08:00</UCPTlogTime>

 <UCPTvalue>122.4</UCPTvalue>

 <UCPTunit>KW</UCPTunit>

 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>

 </Element>

 <Element>

 <UCPTpointName>NVL_nvoPcValueDif_1</UCPTpointName>

 <UCPTlocation>pml1964</UCPTlocation>

 <UCPTlogSourceAddress>0.0</UCPTlogSourceAddress>

 <UCPTlogTime>2002-10-30T02:00:00-08:00</UCPTlogTime>

 <UCPTvalue>122.4</UCPTvalue>

 <UCPTunit>KW</UCPTunit>

 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>

 </Element>

 <Element>

 <UCPTpointName>NVL_nvoPcValueDif_1</UCPTpointName>

 <UCPTlocation>pml1964</UCPTlocation>

 <UCPTlogSourceAddress>0.0</UCPTlogSourceAddress>

 <UCPTlogTime>2002-10-30T02:15:00-08:00</UCPTlogTime>

 <UCPTvalue>120</UCPTvalue>

 <UCPTunit>KW</UCPTunit>

 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>

 </Element>

 </Log>

</iLONDataLogger>

All of the major Enterprise Software vendors are fielding products and platforms that
support the Web services architecture using XML and SOAP, including
Microsoft.NET, IBM WebSphere, Sun Microsystems SunOne, Echelon Panoramix,
Hewlett Packard Web services platform, Oracle 9i, BEA Systems WebLogic, among
others.

Since BACnet and EIB objects and LonMark functional profiles are information
models, and XML is a modeling language, we could express these high level
information models in XML and in so doing make them compatible with the emerging
Web services architecture. Because of the flexibility of XML and the web services
architecture, these high level models could be expanded to include other types of
facility-related (but not necessarily building automation-related) information. If each
building automation protocol developed its own XML model, however, we would
have similar but incompatible system models. Today's problems of translating from

one protocol to another at the building controller level would become tomorrow's
translation problems at the Web services level. What's needed is a unified system
model, in XML, that can be used by any building automation protocol. One of the
standardizing bodies is oBIX (www.orbix.org)

Fig. 6 Web services Architecture

It should also mention here that this push toward Web services architecture should not
be interpreted as an end to standard protocols. Web Services are useful as a
computer-to-computer or software-application-to-software-application interface, but
they are "overkill" as a device-to-device interface. In order for interoperability to
occur, vendors must not only agree on HOW they will communicate, but also on
WHAT they will communicate. Because they include a high-level abstraction of what
information is to be communicated, BACnet, EIB, and LonMark all provide the
WHAT component of interoperability. By combining these information models with
XML, and expanding the objective to include other non-HVAC related aspects of the
facility, Web services can provide an information platform that is high-level,
cross-platform, cross-discipline, and multi-vendor as shown in Figure 7.

Fig. 7 Cross-platform, cross-discipline, and multi-vendor integrating platform

The model will include, but not be limited to, control and monitoring of HVAC, Fire
Alarm, Security, Card Access, Asset Management, Energy, and other facility related
systems and data sources. The document will be provided to standards organizations
such as ISO, IAI, OASIS, ASHRAE and others for consideration as the basis for a
formal international standard. The intent is to provide an interoperable standard which
will enable systems to become interoperable. The following are the main sub-groups
in this model:

1. The Data Modeling Group will need to determine how one model data
that is to be exchanged between two devices or systems. Examples of
attributes of the data model include: (a)Data type, (b) Units, (c) Name,
(d) Accuracy, (e) Self documentation, etc.

2. The Services Group will need to create use cases and proposed
services to deal with those functions that go beyond simple exchange
of data. Examples of services include: (a) Notification of alarms,
diagnostics and events, (b) Sharing of schedules and calendars, (c)
Exchange of historical information such as trend logs.

3. To prevent user from intentionally or even inadvertently view or
change critical facility information, the Security Group is to define the
following: (a) Authentication. Verify that a user of data is allowed

access to perform the requested functions. Verify that the user is who
they say that they are. (b) Encryption. Provide a method to prevent
malicious users from viewing data as it moves across the network.

4. The Management Group needs to define how to configure, validate,
and maintain a network of interconnected devices. Many of these
functions are part of standard networking (for example DHCP, DNS,
etc.). Other functions are more specific to facility management and real
time control. Examples of areas to be defined by this group include: (a)
Discovery of facility management devices, (b) Discovery of available
data objects or variables, (c) Discovery of supported services, (d)
Status of a device or sub-system (e.g. heartbeat), (e) Device / system
backup and restore.

To this end, I should mention about OPC (OLE for process control), which was
appeared on pg.3 in this chapter. The purpose of OPC is to provide a standard-based
infrastructure for the exchange of process control data, no matter these data sources
are coming from PLCs, DCSs, databases, RTUs and other devices. This data is
available through different connections such as serial, Ethernet, or wireless. Different
operating systems like Windows, UNIX,, etc. can work with OPC as OPC clients or
OPC servers, if they use Microsoft’s COM and DCOM technology to enable
applications to exchange data on one or more computers using a client/server
architecture as shown in Figure 8, with Figure 9 to illustrate drivers being need to be
written for different processes.

 Fig. 8 OPC Architecture

 Fig.9 OPC Driver interfaces needed.

OPC defines a common set of interfaces, a simple example is shown in Figure 10. So
applications retrieve data in exactly the same format regardless of whether the data
source is a PLC, DCS, analyzer, software application or anything else. As a result,
OPC is as an out-of-the-box, plug and play communication solution if OPC drivers for
each manufacturers’ devices are provided.

Fig. 10 OPC interface (Value, Quality, Timestamp)

OPC is not as flexible as XML that we have just mentioned, since at least
manufacturers have to provide its own set of driver to the other manufacturers’
devices, and also OPC is more for process control, and is not originally targeted for
broader application such as enterprise network. Recently, OPC has come out with
other specifications like OPC XML, OPC Security, OPC for Complex data, and OPC
for ERP systems. Therefore, we may expect more functionality of OPC in the future.

